Research shows that children do not outgrow challenging behavior, which makes early intervention essential for early childhood educators. What can you do to reduce challenging behaviors when nothing seems to work?

From affirmations to aromatherapy, *When Nothing Else Works* is filled with creative strategies and techniques to address and adjust problematic behavior in the classroom, while also promoting resilience and active engagement in learning. *When Nothing Else Works* looks at the latest behavioral research to home in on the most effective methods for teachers, rather than relying on the same tactics found in most classrooms. Creative solutions range from the simple (a sealed plastic bag filled with hair gel to calm the class wiggle worm) to the more complex (bolstering a child’s resiliency to prevent disruptive behavior from the start), and present educators and caregivers with a variety of options to manage problematic behavior.

Rather than simply providing solutions for the toughest behavioral problems, *When Nothing Else Works* also explains why certain strategies are successful and others are not, what helps children develop a growth mindset, and how to develop an appropriate intervention plan.

William DeMeco, PhD, is a developmental psychologist who serves as a consultant for the Mayenson Academy. William is a nationally certified Olweus Bullying Prevention Trainer, a National Association of School Psychologists–approved provider, and a national consultant for the Office of Juvenile Justice Delinquency Prevention. He is one of the most sought-after trainers for childhood professionals in the area of mental health.
WHEN NOTHING ELSE WORKS

WHAT EARLY CHILDHOOD PROFESSIONALS CAN DO TO REDUCE CHALLENGING BEHAVIORS

BY WILLIAM DEMEO, PHD
Dedication

This book is dedicated to young children and their families. I hope that its contents will assist early childhood professionals in meeting the unique needs of those under their guidance and in empowering them to reach their full potential.

Acknowledgements

I am indebted to all the young children, families, and early childhood professionals I have worked with in the past 30 years. They have influenced my development as a psychologist and have ignited my passion to educate.

Special thanks to Jodi Perry and Laura Laxton for their relentless dedication and perseverance in reading and editing this publication. Their ongoing support and encouragement throughout this journey have assisted in the formation of this work.

Finally, a salutation to my wonderful wife, Beth; my twin sons, Nicholas and Nathaniel; and my daughter, Natalie: You have given me a salubrious perspective on being a husband, a father, an educator, and a psychologist.
WHEN NOTHING ELSE WORKS

What Early Childhood Professionals Can Do to Reduce Challenging Behaviors

William DeMeco, PhD

Gryphon House, Inc.
Lewisville, NC

Copyrighted Materials. All rights reserved.
Table of Contents

Preface ... 7
Introduction .. 9

Chapter 1: Brain Basics 13
How the Brain Functions 14
Principles of Brain Development 16
Our Adaptable Brains 18
Biological Factors of Attention 20
Why Young Children Need Processing Time 22
The Role of Emotions in Learning 24
Effects of Stress on Neurological Development 27
Connection between Brain Injury and Challenging Behaviors ... 27

Chapter 2: Key Questions 29
What Is Challenging Behavior? 30
Who and Why .. 32
When and Where ... 35
Collecting Data .. 36
Long-Term Effects of Challenging Behavior on Young Children .. 37

Chapter 3: The Early Childhood Professional’s Mindset .. 39
The Importance of Mindset 40
Changing Your Mindset 41
The Importance of Respect 43
The Interaction between Temperament and Behavior ... 47

Chapter 4: Resilience in Young Children 51
Defining Resilience and Social and Emotional Intelligence .. 52
The Connection between Resilience and Social and Emotional Intelligence 53
Encouraging the Development of Social and Emotional Intelligence 56

Chapter 5: The Early Childhood Environment 71
How to Organize and Structure the Environment to Help Every Child Succeed 74
Routines and Transitions 79
Developmentally Appropriate Expectations for Young Children .. 83

Chapter 6: Prevention 95
Helping Children Develop a Growth Mindset ... 96

Copyrighted Materials. All rights reserved.
Preface

Reducing challenging behaviors is a team effort. For interventions of challenging behaviors to have the highest level of success, major stakeholders, including directors, teachers, parents, and other possible professionals such as mental health consultants, speech-language pathologists, health coordinators, nutrition coordinators, and occupational therapists, must collaborate. Through collaboration—sharing different areas of expertise and responsibility while working toward common goals—you will have success in achieving what is in the best interest of the child.

Families want what is best for their child and have valuable knowledge about the child that is vital in developing the most practical and effective interventions. For example, parents may be able to provide crucial details about the child’s development, birth and health history, temperament, sleeping patterns, eating habits, and interests that may not be transparent to staff members. These details may provide insights into the function of the child’s behavior. Working with a child’s family is always a better idea than just coming up with prevention and intervention strategies on your own. When the family is involved, they are more likely to be supportive and to help implement the specific strategies at home that will affect behavior. Remember that most families know their child best. Work with them to highlight the child’s abilities, interests, and behaviors.
INTRODUCTION

Years ago, when I was completing my school-psychologist internship, a sixth-grade teacher gave me the following story written by one of her students, and she asked me what I thought.

Beaver the Cleaver

Hey Wally, shouted Beaver do you want to play a game? No, Beaver I have better things to do than play with you, you little toothless brat! I'm going to go upstairs with my girlfriend you little scum! I'm going outside to get some friends for a party you go outside and play with your friends! Shut up, Wally, you know mom doesn't want you to talk to me like that, the doctor says I'm mentally sick! Oh shut up you, retarded hill-bred flea-bitten scum bag! Now go play in your sandbox or go play on the highway. While the party is going on, Wally does not note that Beaver has been in the bathroom all night. Suddenly, the door burst open and with a small assortment of butcher knives on his belt, a machete on his hip, an axe in his left hand, and an cleaver in his right. All of sudden he takes the cleaver and hacks Wally's girlfriend in a shower of her own blood! He doesn't stop, pieces of flesh and organs cover the floor, then he shouts at Wally, I told you I'm sick, now you want forget it. Blindly Joe lunges at Beaver for the murder weapon but Beaver is too agile and hacks off his left arm off as blood spurts in the air. Beaver finishes the gory job with the bloody axe. Beaver repeats after his favorite cartoon character: That's not all folks and then he throws a butcher knife at Sue and it lands in her chest with a bloody spurt she falls stone dead on the floor. Relentlessly Beaver picks up the cleaver and the razor-sharp murder weapon becomes a flying guillotine and savagely slices his head. Stay tune for the next issue.
You might be wondering why I chose to feature this troubling story, written by an older child, in a book focused on young children’s behavior. I wanted to emphasize a very important point: Behavior becomes more challenging as children mature. In the case of this student, when our research team began its case study, we discovered that he had attended one of the preschool programs within the district years earlier. It turns out that during his preschool experience he displayed challenging behaviors. The response of his teacher at the time? “He will outgrow it.”

Research has shown that children do not outgrow this type of behavior—rather, the behavior becomes even more challenging as they mature. The earlier you intervene, the more successful the interventions will be. This book will provide you with knowledge and skills you can use to help these children.

It is my sincere wish that this book provides a beacon of hope to both educators and families who are feeling lost or frustrated on a daily basis as they interact with children who exhibit disruptive behaviors. My years as a teacher made me aware that many educators struggle with children who have challenging behaviors. I earned my graduate degree in psychology so I could help children and become a resource for families and education professionals. I have spent 25 years providing psychological services to children who have mental health concerns, and I want to share the strategies I have learned to help teachers, families, and—most importantly—children succeed and develop to their fullest potential.

Most of the books addressing challenging behaviors in young children are written by early childhood professionals, administrators, educators, or researchers. This book is written from the perspective of a developmental school psychologist. From my years collaborating with educators and parents to prevent and intervene with persistent challenging behaviors exhibited in early childhood settings, I have recognized the enormous need for additional skills and strategies that address these behaviors when nothing else works. Most books offer guidance and discipline strategies for troubled young children. Built on a strong foundation of developmentally appropriate practice, this book provides skills, strategies, and—hopefully—solutions for educators and families who feel like they have run out of options.
Incorporating the latest research regarding prevention and intervention, this book also explores the constructs that are essential to addressing extreme challenging behavior: growth mindset, social and emotional intelligence, resiliency, and advances in the field of neuroscience. Educators and families will learn why, when, and how to implement strategies and skills that prevent and intervene with a child’s disruptive behavior.

I provide *specific answers* to common questions about behavior—answers grounded in research and evidenced-based practices that lead to practical and effective strategies for dealing with those behaviors.

- You will learn about the key variables associated with behavior, such as *antecedents* (triggers) and *consequences*.
- You will gain ideas and strategies for structuring the classroom environment, clearly communicating class routines and expectations, and cultivating a growth mindset that will prepare you to address the challenging behavior young children might display.
- You will learn strategies for developing key components of *social and emotional intelligence*, including self-regulation, recognizing feelings in self and others, calming oneself when upset, social awareness, and developing relationships.
- You will learn how to collect data on a child’s behavior, including such critical elements as *frequency, intensity, duration, and latency*, to determine if behavior is improving.
- You will learn more about resiliency in children and ways to develop the important protective factors associated with the social and emotional intelligences that can alter or even reverse expected negative outcomes.

Even with all of the developmentally appropriate practices in place to prevent and intervene with challenging behavior, some children will still exhibit disruptive behavior in your program. This book provides creative strategies to use when nothing else works and provides guidance in pulling together this wealth of information to develop an intervention plan to be used not only by your program but also by the families.

In my years of experience working with children who exhibit persistent, extreme challenging behavior, I’ve seen tremendous positive change in these children. If you are faced with challenging behavior and you see no end in sight, I invite you to join me on this journey of hope. So, get ready to color outside the lines and push the boundaries of what you know and have tried, especially when nothing else works.
What is the relationship between the brain and behavior? During the past few decades, an explosive growth of knowledge in the cognitive sciences has begun to yield answers to fundamental mysteries about the nature of human behavior. The scientific and medical communities have made great strides in answering the question of how physical matter (the brain) relates to mental phenomena such as perception, memory, learning, attention, and behavior. The study of that relationship resides primarily in the field of cognitive neuroscience.

Cognitive neuroscience takes a multidisciplinary approach to the study of the brain and human behavior, studying internal mental processes and the chemistry, physiology, and anatomy of neurons and neural systems. It provides the latest advances in how human behavior is connected to the brain, which helps us understand how behavior works physiologically. This, in turn, enables us to design interventions and behavior adaptations based on the brain mechanisms involved.
A child learns as a single, integrated organism. To the brain, everything is one complex, adaptive system that creates and controls information. All learning depends on the body’s physiological state. Each posture and movement stores a separate library of learning; for example, eye movements trigger visual, auditory, and kinesthetic senses. It is natural, right, and normal for a child to want to explore whatever objects are within his reach, especially those he has not explored before. Individuals gain more skills by active participation than they do by passive participation.

Each person’s brain differs from all other brains in the world. This uniqueness can be explained by the genetic makeup of the brain and the environmental influences that mold the individual’s personality, character, learning style, and emotional system. Because these factors differ from person to person, we should avoid gender, age, and classroom comparisons. The method that makes the most sense is comparing a child to himself over time.

How the Brain Functions

The brain is part of the central nervous system and controls many bodily functions, both voluntary and involuntary. The adult brain weighs about three pounds and contains mostly water (78 percent), fat (10 percent), and protein (8 percent). The brain has two hemispheres, and each hemisphere has four lobes. Each of these lobes has numerous folds, which do not mature at the same time. The chemicals that foster brain development are released in waves—as a result, areas of the brain evolve in a predictable sequence. This explains, in part, why there are “prime times” for certain kinds of learning and development.

The two hemispheres are connected by bundles of nerve fibers, the largest of which is known as the corpus callosum. The corpus callosum has about 250 million nerve fibers and allows each side of the brain to exchange information freely.
The four lobes are the occipital, frontal, parietal, and temporal. The occipital lobe is in the middle rear area of the brain and is responsible for vision. The frontal lobe is the area around the forehead and is involved with purposeful acts such as judgment, creativity, problem solving, and planning. The parietal lobe is the top rear area of the brain and is responsible for processing higher sensory and language functions. The temporal lobes (left and right side) are above and around the ears. Their duties include hearing, memory, meaning, and language.

In addition, different parts of the brain control various functions:

- **Amygdala**: Located in the middle of the brain, this almond-shaped complex is a critical processing area for the senses. Connected to the hippocampus, it plays a role in emotionally laden memories. The amygdala contains a huge number of opiate receptor sites, which have a role in rage, fear, and sexual feelings.

- **Basal Ganglia**: These clusters of nuclei deep within the cerebrum and the upper parts of the brain stem play an important part in producing smooth, continuous muscular actions for stopping and starting movement.

- **Brain Stem**: Located at the top of the spinal cord, it links the lower brain with the middle of the brain and the cerebral hemispheres. It is responsible for breathing, heart rate, and blood pressure.

- **Cerebellum**: A cauliflower-shaped structure located below the occipital area and next to the brain stem. The Latin word means “little brain.” It is linked to balance, posture, coordination, and muscle movements, as well as cognition, novelty, and emotions. Research also suggests strong links between the cerebellum and memory, spatial perception, language, attention, emotion, nonverbal cues, and decision making. The cerebellum takes up just one-tenth of the brain by volume, but it contains more than half of all the brain’s neurons. It has some 40 million nerve fibers that feed information between the cortex and the cerebellum.

- **Cerebrum**: The largest part of the brain, composed of the left and right hemispheres, it contains the frontal, parietal, temporal, and occipital lobes.

- **Hippocampus**: Found deep in the temporal lobe, central to the middle of the brain area and connected to the amygdala, this crescent-shaped area is strongly involved in learning and memory formation.

- **Hypothalamus**: Located in the bottom center of the middle of the brain, under the thalamus, this complex, thermostat-like structure
When Nothing Else Works

Influences and regulates appetite, hormone secretion, digestion, sexuality, circulation, emotions, and sleep.

A neurotransmitter is a substance that transmits nerve impulses, and different types of cells secrete different neurotransmitters. Each brain chemical works over widely spread areas and brain locations and may have a different effect depending on where it is activated. See Figure 1.1 for a list of important neurotransmitters and their functions.

Figure 1.1 Key Neurotransmitters

- **Dopamine**: Controls arousal levels in many parts of the brain and is vital for giving physical motivation. When levels are severely depleted—as in Parkinson’s disease—a person may find it impossible to move forward voluntarily. Low dopamine may also be implicated in mental status. Hallucinogenic drugs are thought to work on the dopamine system.

- **Serotonin**: Has a profound effect on mood and anxiety; high levels of it are associated with serenity and optimism. It also affects sleep, pain, appetite, and blood pressure.

- **Acetylcholine**: Controls activity in brain areas connected with attention, learning, and memory.

- **Noradrenaline**: Induces physical and mental arousal and heightens mood. Production is centered in an area of the brain called the locus coeruleus, which is one of several candidates for the brain’s pleasure center.

- **Glutamate**: The brain’s major excitatory neurotransmitter, it is vital for forging the links between neurons that are the basis of learning and long-term memory.

- **Enkephalins and Endorphins**: Modulate pain, reduce stress, and promote a sensation of floaty, oceanic calm. They also depress physical functions such as breathing and may produce physical dependence.

Principles of Brain Development

The beginning of brain development starts soon after conception and continues throughout the prenatal period. During pregnancy, the fetal nervous system produces several hundred billion nerve cells; however, one-third to one-half of these cells will disappear as the child develops. It is believed this “downsizing” is a necessary adjustment or refinement in the developmental process. With only a few specialized exceptions, no more nerve cells are added to the nervous system over the entire life span. Unlike the tissue in most other organs, each surviving nerve cell lives for the entire life of a healthy individual.
At birth, the infant’s brain has one hundred billion nerve cells (also called neurons). These neurons will grow and connect with other neurons in systems that control functions such as seeing, hearing, moving, and expressing emotion. These systems, activated by repeated experiences, provide the foundation for the brain’s organization and functioning throughout a person’s life. If a child does not have these experiences, the absence of appropriate activation results in a lack of development or the disappearance of these connections.

At the same time neurons disappear, dendrites—the branches of nerve cells—increase, adding substantially to the surface area available for connections among cells. During a child’s early years, the number of her synaptic connections might triple or quadruple, reaching levels of connectivity that may never be equaled again. By the age of 10, the number of synaptic connections begins to drop and continues to decline slowly as the child becomes an adult.

At birth, the brain is remarkably unfinished. The parts of the brain that handle thinking and remembering, as well as emotional and social behavior, are very undeveloped. The fact that the brain matures in the world rather than in the uterus means that early experiences deeply affect young children. Relationships with parents and other important caregivers; the sights, sounds, smells, and feelings they encounter; and the challenges they meet affect the way children’s brains become wired. In other words, early experiences help determine brain structure, thus shaping the way a person learns, thinks, and behaves for the rest of her life.

Neuroscience research has shown that learning self-regulation is a primary task of newborns and is possible only in nurturing relationships. By providing appropriate and changing stimulation in response to a baby’s states, moods, and interests, families and caregivers help the baby manage his level of arousal and build the networks for self-regulation.

When a baby is born, the brain is relatively undeveloped, with few emotional circuits and little or no ability to control them. A baby learns control from those who have it. In nurturing relationships, a baby’s family or caregivers provide an environment and experiences that build pathways of neural connections through one-on-one stimulus and response. If this process is interrupted, for example, by stress, hunger, or the caregiver’s inadequate responses, the neural connections may not be strong, compromising the child’s ability to self-regulate.
GUIDELINES FOR PROMOTING BRAIN DEVELOPMENT IN YOUNG CHILDREN

- Be warm, loving, and responsive.
- Respond to the child’s cues and clues.
- Talk, read, and sing to the child.
- Establish routines and rituals.
- Encourage safe exploration and play.
- Make TV watching selective and infrequent.
- Use discipline as an opportunity to teach instead of to punish.
- Recognize that each child is unique.
- Take care of yourself.

OUR ADAPTABLE BRAINS

Every brain adapts to its environment based on experience. Effective teaching and impactful change involve consideration of the entire complex system.

- Different areas of the brain develop and mature at different speeds. Individuals develop their “fight-or-flight” capacity first and their problem-solving skills last.
- Most areas of the brain are accessed daily. This happens because an individual’s brain has already pruned away the neurons it does not need. A person’s brain has been customizing itself since the day she was born. It has been designed to fit her life so naturally that it grows to the size she needs. The more she uses it, the more it expands.
- The brain is highly adaptive, especially in the early years of life. Severe damage to one hemisphere usually can be compensated for by the other hemisphere if the damage occurs early (before age five). After that, the ability to switch over is reduced.
- The brain alters its receptor sites for neurotransmitters based on the environment. In an excessively stressed or threatening situation, the brain will increase receptor sites for noradrenaline, which may result in more aggressive, impulsive behaviors.

Every brain develops in its own unique world and adapts in response to its environment. As a result, each brain modifies itself in response to things that others have not had to adapt to: it is the adaptation that makes us intelligent. Single-answer, one-way learning and testing make little sense. Humans have survived by problem-solving and flexible thinking.
Early childhood programs can encourage and support this necessary adaptation through offering children lots of open-ended explorations. Children’s brains keep growing as long as teachers provide them with novel experiences, learner-controlled feedback, and appropriate challenges.

Researcher Marian Diamond discovered the malleability of the brain—its amazing ability to grow new connections with environmental stimulation. Her research found that when the environment is enriched, the brain develops a thicker cortex, more nerve branching, more growth spines, and larger cell bodies. This means the neurons communicate better with one another. Harold Chugani found that the school-age brain almost glows with energy consumption, burning 225 percent of the adult levels of glucose. The brain nearly explodes with spectacular growth during the early school years. During this time, stimulation, repetition, and novelty are essential to laying the foundations for later learning. According to William Greenough, the most critical ingredient to enrich the learner’s brain is that the learning challenges the learner with new information or experiences. Also, there must be some way to learn from the experience through interactive feedback. Novelty can take the form of a change in the decor on the classroom walls every two or four weeks; change in instructional strategies; and use of computers, groups, field trips, guest speakers, pairings, games, student teaching, journaling, or multiage projects.

Challenge is important—too much and students will give up; too little and students will get bored. Mental challenge can come from new material, increasing the degree of difficulty of activities, or limiting the resources. This includes varying time, materials, access, expectations, or support in the learning process. The second component of enrichment is to maximize learner feedback. Feedback reduces uncertainty, increases coping abilities, and lowers the pituitary–adrenal stress responses. The brain itself is exquisitely designed to operate on feedback, both internal and external.

In the early childhood environment there are numerous opportunities for young children to receive feedback, which can be provided by the adults or the other children in the learning center. For example, if a child enters into the personal space of another child who is building an elaborate structure, the second child may say, “Be careful; you might knock down my building.” The statement provides feedback to the first child about his actions. There also are software programs that provide
feedback to young children regarding their responses to specific activities or problems. Closed-ended materials provide immediate feedback to young children since the materials can only be assembled in a specific way; the finished product provides the feedback. Finally, visual cues or pictures of children engaging with materials that are posted in the environment can provide learners with specific cues about the intended use of materials. For example, a picture can show children building with the blocks instead of throwing them.

Biological Factors of Attention

Now that you have an understanding of the complexity of the brain, how it functions, and how it develops, let us focus on one of the most vital specific functions in the frontal cortex: attention. Attention has a tremendous impact not only on learning but also on behavior. I have heard—on more than one occasion—early childhood professionals ask questions such as, "Why can’t this child be attentive?"

From a biological point of view, attention has two purposes: to promote survival and to extend pleasurable states. The brain is always paying attention to something; survival depends upon it. Children can be attentive in an educational environment when the learning is relevant,
engaging, and chosen by the learner. Attention can be external or internal, focused or diffused, vigilant, or relaxed:

- **External attention:** The child is drawn to novel objects or materials that she has not seen the classroom on previous occasions.
- **Internal attention:** The child makes a conscious decision to be attentive to auditory or visual stimulation.
- **Focused attention:** The child concentrates on one specific dimension of the stimuli, such as a car that she moves back and forth on the floor.
- **Diffuse attention:** The child focuses on the car and thinks of creative uses of and for it. Diffuse attention is inclusive and considered to be three-dimensional, giving equal attention to all internal and external stimuli simultaneously as well as the space, silence, and timelessness in which they occur.
- **Vigilance** (also referred to as **sustained attention**): The child remains alert to stimulus events.
- **Relaxed attention:** The child reduces the amount of attention she gives to something.

Selective attention depends on suppression of irrelevant data, such as ignoring the sound of the air conditioner or the buzz of the fluorescent lights, and the application of relevant data, such as listening to a favorite song or experiencing the texture of fingerpaint. This affirms the value of focused learning time followed by diffused activities such as reflection (LaBerge, 1995).

Once a child has sustained focused attention on a particular stimulus or piece of information, he needs to use diffused attention to reflect on the information so he can make sense of what he has observed and incorporate the concept into his previous knowledge base to make it meaningful to him.

If you want attention,

provide a strong contrast from what you were just doing.
Children can sustain focused attention for short periods, but it is not developmentally appropriate to expect them to focus for long periods. The human brain is poor at maintaining nonstop sustained attention, and after sustained attention, the brain needs time for processing and resting. Generally, the ability to sustain focused attention increases with age. Here are some general guidelines for developmentally appropriate expectations:

- Five to seven years old: 5–7 minutes of sustained attention
- Eight to twelve years old: 8–12 minutes of sustained attention
- Thirteen to eighteen years old: 13–15 minutes of sustained attention

Throughout the day, children have natural highs and lows in their ability to pay focused attention. Called ultradian rhythms, these are key cycles in the brain that last about 90–110 minutes. Each individual has about 16 cycles in a 24-hour period. Children who are consistently drowsy may be at the bottom of their attention cycle. Movements such as stretching and breathing can help focus attention: so if a child is drowsy, quietly encourage her to stand and stretch.

Because the brain shifts its cognitive abilities on those high and low cycles, assessments compiled over time, such as portfolios, are more inclusive and more accurate than one-shot tests. There’s a change of blood flow and breathing during these ultradian cycles that affects learning (Klein, Pilon, Prosser, and Shannahoff-Khalsa, 1986). This oscillation suggests children will score lower if they are tested at the wrong time.

Why Young Children Need Processing Time

The brain does not maintain continuous, high-level attention for long periods. LaBerge’s research suggests that our short attention spans evolved to allow us to react quickly to predators and prey and to let us update priorities by rechoosing the object of our attention. Because the brain does not do well maintaining very focused attention for long stretches of time, focused learning time should be followed by defined activities, such as reflection. After learning new information, the brain needs time to absorb and assimilate it.